
OpenCV.js: Computer Vision Processing for the Open Web
Platform

Sajjad Taheri, Alexander
Vedienbaum, Alexandru

Nicolau
Department of Computer Science,
University of California, Irvine

Irvine, California
{sajjadt,alexv,anicolau}@ics.uci.edu

Ningxin Hu
Intel Corporation
Shanghai, PRC

ningxin.hu@intel.com

Mohammad R. Haghighat
Intel Corporation

Santa Clara, California
mohammad.r.haghighat@intel.com

ABSTRACT
The Web is the world’s most ubiquitous compute platform and the
foundation of digital economy. Ever since its birth in early 1990’s,
web capabilities have been increasing in both quantity and quality.
However, in spite of all such progress, computer vision is not main-
stream on the web yet. The reasons are historical and include lack
of su�cient performance of JavaScript, lack of camera support in
the standard web APIs, and lack of comprehensive computer-vision
libraries. These problems are about to get solved, resulting in the po-
tential of an immersive and perceptual web with transformational
e�ects including in online shopping, education, and entertainment
among others. This work aims to enable web with computer vision
by bringing hundreds of OpenCV functions to the open web plat-
form. OpenCV is the most popular computer-vision library with a
comprehensive set of vision functions and a large developer com-
munity. OpenCV is implemented in C++ and up until now, it was
not available in the web browsers without the help of unpopular
native plugins. This work leverage OpenCV e�ciency, complete-
ness, API maturity, and its communitys collective knowledge. It is
provided in a format that is easy for JavaScript engines to highly
optimize and has an API that is easy for the web programmers
to adopt and develop applications. In addition, OpenCV parallel
implementations that target SIMD units and multiprocessors can be
ported to equivalent web primitives, providing better performance
for real-time and interactive use cases.

CCS CONCEPTS
• Information systems → World Wide Web; • Computing
methodologies → Computer vision; • Theory of computa-
tion → Parallel algorithms;

KEYWORDS
Computer vision; Multimedia; Web; JavaScript; Parallel Processing;
Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3208126

ACM Reference Format:
Sajjad Taheri, Alexander Vedienbaum, Alexandru Nicolau, Ningxin Hu,
and Mohammad R. Haghighat. 2018. OpenCV.js: Computer Vision Pro-
cessing for the Open Web Platform. In Proceedings of 9th ACM Multime-
dia Systems Conference (MMSys’18). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3204949.3208126

1 INTRODUCTION
The Web is the most ubiquitous compute platform with billions of
connected devices. It’s popularity in online commerce, entertain-
ment, science and education has been increasing in a tremendous
way. There is also an ever growing amount of multimedia content
on the web. Despite such rapid progress in qunatity and quality of
content, computer vision processing on the web browsers has not
been a common practice. One approach taken by developers is to of-
�oad vision processing tasks to the server. This approach however,
sacri�ces user privacy, and su�ers from always online requirements
and the increase in data transfer bandwidth and latency. The lack
of client-side vision processing is due to several limitations:1) lack
of standard web APIs to access and transfer multimedia content, 2)
inferior JavaScript performance (the standard language of the web),
and 3) lack of a comprehensive computer vision library to develop
apps. We show that this work along with other recent developments
on the web front, will address those limitations and empower web
with computer vision capabilities:

(1) Addition of camera support and plugin-free multime-
dia delivery on the web: HTML5 introduced several new
web APIs to capture, transfer and present multimedia con-
tent in browsers without the need of third-party plugins.
Among them Web Real-Time Communication (WebRTC)
allows capturing and peer-to-peer transportation of multi-
media content, and video element API can be used to display
videos. Recently, immersive web provides web applications
with access to Virtual Reality (VR) and Augmented Reality
(AR) contents that makes new engaging user experiences on
web possible.

(2) Improved JavaScript performance: JavaScript is the dom-
inant language of the web. Since it is a scripting language
with dynamic typing, it’s performance is inferior to native
languages such as C++.Multimedia processing often involves
sheer amount of computation and complex algorithms which
makes it very expensive. With client side technologies, such
as Just-In-Time (JIT) compilation, and with the introduction
of WebAssembly (WASM), a portable binary format for the

478

http://www.acm.org/publications/policies/artifact-review-badging#available

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Taheri et al.

OpenCV

core

imgproc

dnn

imgcodecs

highgui

video

calib3d

gpu

features2d

ml

objdetect

viz

Figure 1: OpenCV is implemented as a collection ofmodules

web compilation [1], web clients are able to reach near native
level of JavaScript performance and handle more demanding
tasks.

(3) A comprehensive computer vision library: Although
there are several computer vision libraries developed in na-
tive languages such C++, they cannot be used in browsers
without relying on unpopular browser extensions which
pose security and portability issues. There have been few
e�orts to develop computer vision libraries in JavaScript
[2–4]. However, they often provide a handful of vision func-
tions from certain domains such as object detection, video
tracking or deep neural networks. Expanding them with new
algorithms and optimizing the implementation is a challeng-
ing task. On the other hand, Accelerated shape detection
API [5] provides functions to detect shapes such as faces
and bar codes while the e�cient implementation is left to
browser vendors. The above mentioned works su�er from
lack of either functionality, performance or portability. As
an alternative approach, we take advantage of an existing
computer vision library that is developed in a native lan-
guage (i.e. OpenCV) and make it to work on the web. We
show that this approach works great on the web for several
reasons: 1) expansive set of functions with optimized imple-
mentation is provided, 2) it performs more e�ciently than
normal JavaScript implementations and performance will
even improve through parallelism, and 3) developers can
access a big collection of existing resources such as tutorial
and examples.

2 OPENCV.JS: OPENCV IN JAVASCRIPT
In the native world, OpenCV [6] is the de-facto library for computer
vision development. OpenCV is very comprehensive, and as shown
by Fig. 1, is implemented as a set of modules. It o�ers a large
number of primitive vision kernels and applications ranging from
image processing, object detection, tracking, machine learning,
and deep neural networks (DNNs). OpenCV also provides e�cient
implementation that targets both scalar and parallel hardware such
as multiple processor cores and GPUs.

We translate OpenCV from C++ into JavaScript and refer to it
as OpenCV.js. Table 1 categorizes and lists the functions that are
included within OpenCV.js. Several OpenCV modules excluded for
two reasons:

Web Application

opencv.js (library interface)

Vision functions
(WASM or asm.js)

utils.js
(GUI and media capture)

WebRTC CanvasSIMD.js Web workersWeb APIs

OpenCV.js

Figure 2: OpenCV.js components and its interactions with
web applications and web APIs

(1) Not all of OpenCV’s o�erings is compatible with the web.
For instance high level GUI and I/O module("highgui") which
provides functions to access media devices such as cameras,
and graphical user interfaces, is platform dependent and
cannot be compiled to the web. Those functions however,
can be implemented using HTML5 primitives. For instance,
дetUserMedia can be used to access media devices, and Can-
vas element can display graphics.

(2) Some of OpenCV functions are only used in certain appli-
cation domains that are not common in typical web devel-
opment. For instance, camera calibration module ("calib3d")
has applications in automation and robotics. In order to re-
duce the size of the generated library for the general usage,
we have identi�ed the least commonly used functions from
OpenCV and excluded them from the library. However, since
there are still many functions that might be useful for special
use cases, we have provided a way to build the library with
a list of user-selected functions.

.
Fig. 2 shows an overview of OpenCV.js and how it interacts with

web applications and standard web APIs. Web applications will use
Opencv.js API to access the provided functions as listed in Table 1.
While the vision functions from OpenCV are compiled either into
WASM or asm.js, GUI features and media capture capabilities are
provided by a JavaScript module (util.js). OpenCV.js utilizes stan-
dard web APIs such asWebRTC and Video/Canvas to provide media
access and GUI capabilities, and uses web workers and SIMD.js to
implement parallel algorithms.

3 TRANSLATING OPENCV TO JAVASCRIPT
AND WEBASSEMBLY

In this section, we describe our approach and the tools that are used
to generate OpenCV.js from OpenCV source code. We have used
Emscripten [7], a LLVM-based source-to-source compiler devel-
oped by Mozilla that converts C++ code into JavaScript. Originally
Emscripten targets a typed subset of JavaScript called asm.js that,
due to its simplicity, allows JavaScript engines to perform extra
level of optimizations. In fact, it is even possible to compile asm.js

479

OpenCV.js: Computer Vision Processing for the Open Web Platform MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Module Provided Functions
Core Image manipulation and core arithmetic
Image Processing Numerous functions to process and analyze images
Video Video processing algorithms such as tracking, background segmentation and optical �ow
Object Detection Haar and HOG based cascade classi�ers
DNN Inference of Ca�e, Torch, TensorFlow trained networks
GUI Helper functions to provide graphical user interface, to access web images and videos, and to display content

Table 1: OpenCV.js modules and provided functions

functions before execution. While performance is impressive, pars-
ing and compiling big JavaScript �les could become bottleneck,
especially for mobile devices with weaker processors. This was one
of the main motivations for development of WebAssembly (WASM)
[1]. WASM is a portable size and load-time e�cient binary format
designed as a target for web compilation. Compared to asm.js, it
is more compact and is much faster to parse and compile. WASM
will eventually make asm.js obsolete. However, WASM is still under
development and is not fully supported on older JavaScript engines.
We have used Emscripten to compile OpenCV source code into
both asm.js and WASM. Both version o�er the same functionality
and can be used interchangeably.

During compilation process with Emscripten, C++ high level
language information such as class and function identi�ers are
replaced with mangled names. It will be almost impossible for de-
velopers to develop programs through mangled names. To enables
the library to have a similar interface with normal OpenCV that
many programmers are already familiar with, we provide binding
information of di�erent OpenCV entities such as functions and
classes and expose them to JavaScript properly. Since OpenCV is
large, and growing continuously through new contributions, contin-
uously updating the port by hand is impractical. Hence, we propose
a semi-automatic approach that takes care of the tedious parts of the
translation process while allowing the expert insight that enables
high-quality/e�cient code production. Fig. 3 lists the steps involved
in the process of converting OpenCV C++ code to JavaScript. At
�rst, OpenCV source code is con�gured to disable components and
implementations that are platform speci�c, or are not optimized
for the web. Next, information about classes and functions that
should be exported to JavaScript will be extracted from OpenCV
source code. For e�ciency, binding information of OpenCV core
module, which includes OpenCVmain data structure (i.e. "cv::Mat"),
is manually provided. We maintain a white list of OpenCV classes
and functions that should be included in the �nal JavaScript build.
This list can be updated to include or exclude OpenCV modules
and/or functions. By using the binding information and function
white list, we generate a glue code that maps JavaScript symbols to
C++ symbols and compile it with Emscripten along with the rest
of OpenCV library into JavaScript. The output of this process will
be a JavaScript �le (opencv.js) that serves as library interface along
with WASM or asm.js implementation of OpenCV functions. utils.js
which includes GUI, I/O and utility functions, and is implementd
seaparatley, will also be linked with the rest of opencv.js.

Opencv
source code

Con�guration

Core bindings(C++)

Binding Generator

Glue code(C++)

Toolchain

Vision functions
(WASM or asm.js) opencv.js utils.js

Existing component Our contribution
Generated code

Figure 3: Generating OpenCV.js

4 USING OPENCV.JS
OpenCV.js API is based on OpenCV C++ API and shares many
similarities with it. For instance, C++ functions are exported to
JavaScript with the same name and signature. Function overload-
ing and default parameters are also supported in JavaScript ver-
sion. This makes it alot easier to migrate to JavaScript for users
who are already familiar with OpenCV development in C++. Al-
though OpenCV C++ classes are ported to JavaScript objects with
the same member functions and properties, basic data types are
di�erent between the two versions. For instance, JavaScript is using
Number (double precision �oating point) for all numerical types.
JavaScript engines use garbage collector(GC) to manage program
memory. However, GC activity has negative impact on the perfor-
mance. Hence, OpenCV.js uses static memory management and
programmers are responsible for freeing OpenCV.js objects when
they are no longer in use. Since manual memory management for
primitive types is tedious, we have used JavaScript equivalents
for basic C++ types such as numbers, boolean values and strings.
All std :: vectors are translated into JavaScript arrays except for
vectors of cv :: Mat . This is particularly helpful since by removing
the vector, it will remove all the cv :: Mat elements. Table 2 shows
equivalent JavaScript data types for basic C++ data types.

480

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Taheri et al.

C++ Type JavaScript Type
Numerical types(e.g. int, �oat) Number
bool Boolean
enum Constant
std::string String
Primitive types (e.g. cv::Point) Value objects
std::vector (of primitive types) Array
std::vector (of cv::Mat) cv.Vector

Table 2: Exported JavaScript types for OpenCV basic C++
types

Listing 1 shows a sample JavaScript program which usesMOG2
method (Gaussian mixture model based) provided by OpenCV.js
to subtract the background from the input video. This example
works on top of a simple HTML page with a HTML5 video ele-
ment named videoInput serving as the input source and a canvas
element named canvasOutput which renders the program output.
In line 2, cv .VideoCapture utility function is used to access input
video frames from the video element. In lines 3 and 5, two OpenCV
matrices are created to hold the input and output frames. In line
7 a background subtractor instance is created. MOG algoritm will
be applid to every frame on the input video. This example assumes
that the input video contains 30 frames per second. Hence, a timer
is used to invoke processV ideo function every 1/30 of a second.
At every invocation of processV ideo function, we feed the next
frame of the video to the background subtractor and extract the
foreground mask (line 20). In line 21 we will display the result on
the output canvas and then schedule the function to be called for
the next frame (line 24). Fig. 4 shows two snapshots of this program
running inside a browser.

Listing 1: Background subtraction example
1 var video = document.getElementById('videoInput '),
2 cap = new cv.VideoCapture(video),
3 frame = new cv.Mat(video.height , video.width ,
4 cv.CV_8UC4),
5 fgmask = new cv.Mat(video.height , video.width ,
6 cv.CV_8UC1),
7 fgbg = new cv.BackgroundSubtractorMOG2 (500,16, true);
8 const FPS = 30;
9 function processVideo () {
10 try {
11 if (! streaming) { // clean and stop.
12 frame.delete (); fgmask.delete (); fgbg.delete ();
13 return;
14 }
15 let begin = Date.now ();
16 // start processing.
17 cap.read(frame);
18 fgbg.apply(frame , fgmask);
19 cv.imshow('canvasOutput ', fgmask);
20 // schedule the next one.
21 let delay = 1000/ FPS - (Date.now() - begin);
22 setTimeout(processVideo , delay);
23 } catch (err) {
24 utils.printError(err);
25 }
26 };
27 // schedule the first frame.
28 setTimeout(processVideo , 0);

(a) Processing a frame

(b) Processing another frame

Figure 4: Demonstration of background subtraction exam-
ple on a video

5 PERFORMANCE EVALUATION
This section presents performance evaluation of OpenCV.js. Our
evaluation includes both primitive kernels that perform simple
operations such as pixel-wise addition or convolution, and more
sophisticated vision applications. Our selected vision applications
include implementation of Canny’s algorithm for �nding edges [8],
�nding faces using Haar cascades [9], and �nding people by using
histogram of gradients as features [10]. We have used an instance of
Firefox 56 running on Intel Corei7-3770 CPUwith 8GB of RAMwith
Ubuntu 16.04 as our set up and ran experiments over sequences
of video data (400-600 frames) collected from Xiph.org archive.
Figs. 5 and 6 show the performance of simple kernels and vision
applications compared to their native equivalent that use OpenCV
scalar build (not using parallelism). Experiments are repeated for
di�erent pixel types that is supported by the benchmarks. As it
shown, in all cases, the performance is close to the native which
is impressive for JavaScript. While we found WASM and asm.js
performance to be close, WASM version of library is signi�cantly
faster to initialize and is more compact (5.3 MB vs 10.4 MB).

6 PARALLEL PROCESSING IN OPENCV.JS
Computer vision is computationally demanding, since a lot of com-
putations need to be performed on massive number of pixels. For
instance, each iteration of Canny, face, and people benchmarks
take on average 7 ms, 345 ms and 323 ms to process an image with
resolution of "640x480" respectively. While Canny is fast enough
to be computed in real-time, face and people detection examples
are very expensive and cannot be used in real time and interactive
use cases. Fortunately, computer vision algorithms are inherently

481

OpenCV.js: Computer Vision Processing for the Open Web Platform MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

bila
tera

l-�l
ter

add
-we

igh
tedadd

rgb
2gr

ay
abs

di�

Gau
ssia

n-b
lur

bitw
ise

inte
gra

l

thr
esh

old ero
de

ima
ge-

pyr
am

id
0

0.5

1

1.5

Benchmark

Sp
ee
du

p
co
m
pa
re
d

to
ba
se
lin

e
C+

+

Char Short Floating Point

Figure 5: Performance comparison of native andWebAssem-
bly versions of primitive kernels

Can
ny face peop

le
0

0.2
0.4
0.6
0.8
1

Benchmark

Sp
ee
du

p
co
m
pa
re
d

to
ba
se
lin

e
C+

+

Figure 6: Performance comparison of native andWebAssem-
bly versions of vision applications

Ax Ay Az Aw

Bx By Bz Bw

Cx Cy Cz Cw

+ + + +

Ax : Ay : Az : Aw

Bx : By : Bz : Bw

Cx : Cy : Cz : Cw

+

Figure 7: Scalar vs SIMD addition of four integers

parallel, and with good algorithm design and optimized implemen-
tation, big speedup can be achieved on parallel hardware. OpenCV
already comes with parallel implementation of algorithms for dif-
ferent architectures. We take advantage of two methods that target
multicore processors and SIMD (Single-Instruction-Multiple-Data)
units to make the JavaScript version faster. We have skipped GPU
implementations at the moment due to lack of an standard web API
for general purpose programming on GPUs.

6.1 SIMD.js
SIMD.js [11, 12] is a new web API which exposes processor vector
capabilities to the web. SIMD.js is based on a common subset of
Intel SSE2 and ARM NEON instructions sets that runs e�ciently
on both architectures. They de�ne vector instructions that operate
on 128-bit wide vector registers. A vector register for instance can
be used to hold four integers, four single precision �oating points,

or sixteen bytes. Fig. 7 shows how vector registers can be utilized
to add four integers using one vector instruction.

SIMD is proven to be very e�ective to speedupmultimedia, graph-
ics and scienti�c applications [12–14]. In fact, many OpenCV func-
tions including core routines, are already implemented using vector
intrinsics [13]. We have adopted the work done by [15] to trans-
lates OpenCV vectorized implementations using SSE2 intrinsics
into JavaScript with SIMD.js instructions. Inclusion of SIMD.js im-
plementation will not a�ect the library interface. Fig. 8 shows the
speedup that is obtained by SIMD.js on selected kernels and ap-
plications running on Firefox. Up to 8x speedup is obtained for
primitive kernels. As expected, speedup is higher for smaller data
types. There is less vectorization opportunities in complex func-
tions such as Canny, face and people detection. Currently, SIMD.js
can only be used in the asm.js context and is supported by Mozilla
Firefox and Microsoft Edge browsers. Since SIMD in WebAssembly
is planned to have the same spec as SIMD.js, similar performance
numbers are expected.

6.2 Multithreading using web workers
JavaScript programs use web workers [16] for parallel processing
of compute-intensive tasks. Web workers communicates by passing
message which incurs signi�cant cost for large messages such as
images. SharedArrayBu�er [17] is recently proposed as a storage
that can be shared between multiple web workers. It can be used to
implement shared memory parallel programming model. OpenCV
uses its’ "parallel_for_" framework to implement parallel version
of vision functions that can target di�erent multithreading models
including POSIX threads (pthreads). With recent Emscripten devel-
opments, we were able to translate pthreads API into equivalent
JavaScript using web workers with shared array bu�ers. OpenCV.js
with multithreading support, will have a pool of web workers and
allocate a worker when a new thread is being spawn. In addition,
it exposes OpenCV API to dynamically adjust the concurrency
such as changing number of concurrent threads such as "cv.Set-
NumThreads".

To observe the performance using multiple web workers, we
measured the performance of three application benchmarks that
did not gain from SIMD vectorization. We used di�erent numbers
of workers up to 8. OpenCV load balancing algorithm divides the
workload evenly between threads. As shown in Fig. 9, on a processor
with 8 logical cores, between 3 to 4 times performance speedup is
obtained. Note that similar trend is observed on native pthreads
implementation of the mentioned functions.

7 AVAILABILITY
OpenCV.js is already landed to the o�cial OpenCV repository
(https://github.com/opencv/opencv/). This will ensure function-
ality and compatibility of OpenCV.js in future OpenCV releases.
Since browser support for SIMD.js and shared web workers is not
available yet, parallel processing features is not enabled yet. We
have developed expansive online resources to help developers and
researchers learn more about OpenCV.js and computer vision in
general that can be accessed at https://docs.opencv.org. OpenCV.js
can also be used in Node.js based environments. It is published

482

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Taheri et al.

add

add
-we

igh
ted

abs
di�

bitw
ise

Gau
ssia

n-b
lur

rgb
2gr

ay
inte

gra
l

thr
esh

old ero
de

ima
ge-

pyr
am

id
Can

ny face peo
ple

1
2
4

8
10

Benchmark

Sp
ee
du

p
co
m
pa
re
d

to
sc
al
ar

Ja
va
Sc
rip

t

Char
Short

Floating point

Figure 8: Performance improvement using SIMD.js (asm.js)

1 2 4 8

1

2

3

4

Number of active parallel web workers

Sp
ee
du

p
co
m
pa
re
d

to
sin

gl
e-
th
re
ad
ed

Ja
va
Sc
rip

t

Canny
face

people

Figure 9: Speedup achieved using multiple Web workers
(asm.js)

on the Node Package Manager (NPM) at: https://www.npmjs.com/
package/opencv.js.

8 CONCLUSION
This work brings years of OpenCV development in computer vision
processing to the web with high e�ciency. It provides a collec-
tion of carefully selected computer vision functions ranging from
image processing, object detection, video analysis, features extrac-
tion, and deep neural networks. Experimental results demonstrate
high capability of the developed framework. Thanks to JavaScript
portability, for the �rst time, a large collection of vision functions
can be used not only on web browsers but also on Node.js based
embedded systems and cross-platform Desktop development (e.g.,
Electron). We believe it will be a great asset for many emerging
web applications and experiences including virtual and augmented
reality. In addition, we have provided a large collection of computer
vision tutorials using OpenCV.js that we hope will be helpful for
education and research purposes.

9 ACKNOWLEDGMENTS
This work is supported by the the Intel Corporation. We are grateful
to Congxiang Pan, Gang Song, and Wenyao Gan for their contri-
butions through Google Summer of Code (GSoC) program. We

also would like to thank OpenCV community for their support and
helpful feedback.

REFERENCES
[1] Andreas Haas, Andreas Rossberg, Derek L Schu�, Ben L Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to
speed with webassembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 185–200. ACM, 2017.

[2] Eugene Zatepyakin. Jsfeat-javascript computer vision library: https://github.
com/inspirit/jsfeat. Accessed: 2018-15-4.

[3] Eduardo Lundgren, Thiago Rocha, Zeno Rocha, Pablo Carvalho, and Maira Bello.
tracking.js: Amodern approach for computer vision on theweb: https://trackingjs.
com, 2016. Accessed: 2018-15-4.

[4] Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and Tatsuya Harada.
Webdnn: Fastest dnn execution framework on web browser. In Proceedings
of the 2017 ACM on Multimedia Conference, MM ’17, pages 1213–1216, New York,
NY, USA, 2017. ACM.

[5] Miguel Casas-Sanchez. Accelerated shape detection in images: https://wicg.
github.io/shape-detection-api/, 2018. Accessed: 2018-15-4.

[6] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. " O’Reilly Media, Inc.", 2008.

[7] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings of the
ACM international conference companion on Object oriented programming systems
languages and applications companion, pages 301–312. ACM, 2011.

[8] John Canny. A computational approach to edge detection. In Readings in
Computer Vision, pages 184–203. Elsevier, 1987.

[9] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for
rapid object detection. In Image Processing. 2002. Proceedings. 2002 International
Conference on, volume 1, pages I–I. IEEE, 2002.

[10] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[11] Simd.js speci�cation: http://tc39.github.io/ecmascript_simd/. Accessed: 2018-15-
4.

[12] Ivan Jibaja, Peter Jensen, Ningxin Hu, Mohammad R Haghighat, John McCutchan,
Dan Gohman, Stephen M Blackburn, and Kathryn S McKinley. Vector parallelism
in javascript: Language and compiler support for simd. In Parallel Architecture
and Compilation (PACT), 2015 International Conference on, pages 407–418. IEEE,
2015.

[13] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-time
computer vision with opencv. Communications of the ACM, 55(6):61–69, 2012.

[14] Sajjad Taheri. Bringing the power of simd.js to gl-matrix: https://hacks.mozilla.
org/2015/12/bringing-the-power-of-simd-js-to-gl-matrix/, 2015. Accessed:
2018-15-4.

[15] Peter Jensen, Ivan Jibaja, Ningxin Hu, Dan Gohman, and John Mc-Cutchan. Simd
in javascript via c++ and emscripten. InWorkshop on Programming Models for
SIMD/Vector Processing, 2015.

[16] Web workers: https://www.w3.org/TR/workers/, 2015. Accessed: 2018-21-2.
[17] Ecmascript 2018 language speci�cation: https://tc39.github.io/ecma262/, 2017.

Accessed: 2018-15-4.

483

